
(In)Security of Mobile Banking...and of Other

Mobile Apps∗

Eric Filiol and Paul Irolla

ESIEA - Laboratoire de virologie et de cryptologie opérationnelles

France

{filiol,irolla}@esiea.fr

March 26, 2015

Abstract

Mobile banking is about to become the de facto standard for banking
activities. Banking apps on smartphones and tablets are becoming more
and more more widespread and this evolution aims at strongly limiting the
classical access to banks (physical, through PC browser, through ATM).
The aim is to first i cut the cost but also to make the personal data
explode.

Then three critical issues arise because we entrust those mobile appli-
cations by feeding them with passwords, private information, and access
to one of the most critical parts of our liking (money): Do those appli-
cations protect our private life and especially which kind of information
is leaking to the bank? Are they containing vulnerabilities that could be
exploited by attackers?

In this talk, we are going to present a deep analysis of many banking
apps collected in the world as well as the Facebook app which is likely
to be the most used app in the world. We have performed static and
dynamic analysis based on the binaries AND the source code. We will
show that almost all apps are endangering our private data (sometimes
severely) but in a few cases the presence of vulnerabilities are extremely
concerning.

Keywords: Android App Security - Mobile Banking - Static Analysis -
Dynamic Analysis - Data privacy.

1 Introduction and Background

Mobile devices (tablets, smartphones and soon connected watches) have now
invaded our life and there is no single aspect that is not impacted by mobility:

∗This work has been presented at Black Hat Asia 2015.

1

health, everydays common tasks and uses, banking, business, social media....
Mobile devices are becoming more and more the unique entry point of our life.
In this respect two main issues are critical:

• the security of our data and mobile environments. Malware can infect our
devices. Vulnerabilities can be exploited to enable illegimitate access to
them by an attacker;

• the protection of our privacy since many data may naturally leak to
providers/companies that are selling/proposing not only the devices but
also the different services on them. Most of the times, these companies
and us, as customers, do not share the same interests.

In a mobile device, apps are in fact the most critical parts. We install them
more or less voluntarily (more and more services are now available ONLY with
mobile apps). They get more or less extensively access to the operating system
and our data. They are suspected to do far more that the intended and official
actions they are supposed to. In a word, can we trust them?

As far as mobile banking is concerned, those issues are of course even more
critical. It relates not only to our money and assets but also to all the aspects
of our life that are impacted by money: what we buy, what we do... While
mobile banking becomes more and more invasive. Banks intend to reduce costs
by closing more and more bank (physical) agencies to develop virtual agencies
that can be accessed only through mobile banking. This the reason why – with-
out loss of generalities – we focused on banking apps in this paper. However
the reader must keep in mind that from the code perspective there is no fun-
damental difference with the other application domain. Insecurity and privacy
are common issues which concern all apps.

This study has been conducted in the context of the OpenDAVFI project [9]
which is the official, free and open fork of the former DAVFI project [5]. Funded
by the French Government (6 millions euros with 0.35 % of funding), its goal
was to design and develop a sovereign and trusted new generation antivirus
software for Android, Linux and Windows. The main part of the project was
conducted by our laboratory.

As far as the Android version is concerned, we have deeply modified the
operating system to provide more security: file system encryption, preventing
physical access-based attacks (enabling thus to access to data and to the system
directly) and provided many additional security features like SMS encryption,
VoIP encryption, fake geolocation system... But one of the key features is that
all apps are available on a secure market only. Beforehand each app is fully
analyzed (static and dynamic analysis including a reversing step). Whenever
safe AND compliant to our security policy, the app is then certified and digitally
signed before made available on the secure market. It means that contrary to
most existing app markets (including that of Google), every app goes through
a deep security analysis.

Very soon in our study we have been aware that simply asking to any app not
being a malware was not sufficient. We discover that even legitimate apps can

2

be malevolent when it comes to targeted marketing and user tracking capabili-
ties. A few apps contains severe vulnerabilities. Thus, the classical “malware”
definition needs to be extended.

An app is trustworthy according to our Trust Policy if and only if the fol-
lowing mandatory conditions are met:

• It does not contain hidden functionalities.

• User information collection must be motivated by explicit functionalities.

• Web communications involving personal user information must be en-
crypted.

• The app does not contain known vulnerabilities.

In this paper, we thus describe the tools and the methodology we have
developped to analyze and certify mobile apps. This paper is organized as
follows. In Section 2, we present the different tools we have delopped for static
analysis, dynamic analysis and apk database enlargement. In Section 3, we
first present the results regarding the app which is likely to be the most used
app: Facebook app to illustrate our methodology. It represents the worst case
situation in terms of privacy violation and infringement. In Section refbankapps,
we present the detailed results regarding the security of banking apps we have
analyzed throughout the world and we present a world tour of insecurity by
esposing results for a few bank apps. In particular, we compare the comparison
between the Western world and the Asian world since we observed a significant
difference in terms of development security and privacy protection. Section 5
will conclude and present future work.

It is worth mentioning that most banks have been contacted to provide (for
free) all technical details. Up to now, only a very few have answered but did
not take our recommendations into account. As a general observation is is very
difficult to identify the suitable contact point in a bank. That is why we expect
that people in charge of app security in their respective bank will contact us.

2 Our Analysis Tools

We have developped three main tools for analyzing and certifying android apps:

• Egide which performs static analysis and malware detection.

• Panoptes providing advanced dynamic analysis (network communications
analysis at runtime).

• Tarentula, a complex web crawling framework to collect malicious and
legit apps throughout the world.

3

2.1 The Egide Tool

Egide is a prototype for static analysis based on advanced and innovative data-
mining techniques. It detects malware by exploring similarities (as defined in
data-mining techniques) with known malware. Moreover, it produces a static
analysis report which is a direct support to the manual analysis, for research
and deep analysis purposes.

Figure 1: Egide Reports

The usual way to detect malware relies on a more or less manual construction
of characteristic signatures (as a sequence or patterns of bytes). It is a determin-
istic detection method whose drawbacks are first to detect only already known
malware and second is prone to false positives. In order to deal with these ever-
growing limitations, antiviral research is moving toward heuristic detection (as
algorithms aiming at finding a sub-optimal solution to a naturally untractable
problem with regards to the complexity theory). Egide precisely works in this
context by developping a fully heuristic detection based on behaviour similarities
with known malware.

This approach has two strong points:

• It enables an efficient detection of unknown malware (they often exhibit
common behaviours with known malware).

4

• The manual and time-consuming step to update signature database is no
longer necessary. Consequently, the delay to adapt to the attacker is far
quicker.

However the accepted hypothesis – which constitues the basis of the proposed
solution – is that there is not necessarily common characteristics between all
malware. This is why the traditional malware detection classifies malware into
families. It is in fact these families that share common behaviour characteristics.
From the existing classification of malware, we wanted to develop a system that
learns by experience what those characteristics are.

How is this achieved? Applications of the database are reversed in order to
obtain an equivalent source code. As Android applications are written primarily
in Java, reverse engineering step is fairly simple. Several open source tools exist
for this task.

Once the resources and code are obtained, the following information is re-
trieved. They are the “characteristics” of the application and consequentely
they define our basis for statistical and calculations of similarities on malware
families

• Permissions.

• Java paquets/libraries names.

• Java classes and methods names.

• Character strings.

• The entry points in the application.

• Behaviours.

• Calls to the Andoid API.

• Calls to third-party APIs.

• Hash values for each ressource file.

• Structure signature for each method.

Malware behaviors are viral patterns that we often encounter in Android mal-
ware such as shell commands to remount the system read and write mode, or
dynamic loading code from a resource file.

The last feature is the signature of the structure of each method in the
application. Each character of the signature for this method is a structural
opcode of the method. The idea is that some opcodes are more important
than others such as “if”, “goto” and “call” primitives. These are structural
opcodes. If two methods have similar structures then they are likely to be
similar. Moreover since the structure is represented by a character string, then
it is possible to apply efficient text similarities computation algorithms to it.

5

The statistics of all of these features are computed for all legit applications
as well (goodware) as well as for each malware family.

Generally any Android malware look likes a healthy/legit application in
which a piece of malicious code has been inserted. There are therefore many
healthy behaviors and only a few malicious behaviors. In order to separate the
wheat from the chaff, the inverse frequency of the characteristics of healthy ap-
plications is multiplied to the frequency of features found in malware families.
This is an adaptation of the TF-IDF [11] algorithm used by search engines to
give a relevance index to words. For example, the words “the, of, then” ...
are not worth anything in a Google search. They are present in all documents
which makes them irrelevant.

The result thus obtained for each feature is a weight representing its impor-
tance/relevance in the malware family. This will be used for similarity compu-
tation.

It becomes possible to calculate series of similarity factors between an ap-
plication and each malware family. The problem is that we need a single factor
in determining whether an application is malicious or healthy. This is where
an learning system based on neural networks is used. Its role is to determine
beyond which values or similarity factors combination values, we can decide
whether the application is malicious or not.

The similarity vectors are used to train the neural network. Once this train-
ing phase is completed, the antivirus is ready to use. The effectiveness of such an
antivirus has been tested on real conditions and has been proved very efficient,
especially on new malware that were targeting specifically targeting organiza-
tions of vital importance. They all were detected successfully without any false
positive.

Finally, for each analyzed application, Egide generates a static analysis re-
port (see Figure 1). It shows for which line in the source code, behaviors and
risky method calls are detected. This provided thus a starting point to the
expert in case of an aditional manual static analysis.

6

Figure 2: Egide Final Report

2.2 The Panoptes Tool

This tool performs an advanced dynamic analysis by anayzing network com-
munications at runtime. It can monitor all communications based on HTTP,

HTTPS, POP, IMAP, SMTP between the application and the Internet. Network
communications are the bottleneck through which pass almost all the risky be-
haviors and vulnerability exploitations. This is why it is essential to be able to
analyze it.

The system is quite simple: the phone is connected during the dynamic anal-
ysis to a WiFi access point which is running an interception program. Plaintext
communications can be intercepted directly. For encrypted communications
based on SSL/TLS, a fake certificate from a certificate authority was added to
the native list contained in the phone. This means that recipients can be au-
thenticated by that authority. Whenever the phone starts an encrypted request,
the transaction is intercepted. The Wifi access point forwards the request to the

7

recipient as if it were the legitimate issuer and transmits the response from the
server, which is certified by the false Certificate Authority in the phone. The
access point is considered at this present time as the legitimate recipient to the
phone and as the legitimate sender contacted by the server: it is able to decrypt
communications. It is in fact a simple man’s middle attack on the SSL/TLS
protocol.

As soon as the tested application is closed, the HTTP and HTTPS sessions
are reconstructed. An interactive graph of communications in the form of html
document (Figure 3) is generated in order to navigate through this huge mass of
information. This document is used for manual analysis and allows in particular
to detect potential vulnerabilities and personal information leakage.

Figure 3: Panoptes Graph

The test platform is pretty simple. The required material is

• A Wifi card with Master mode available.

• An Ethernet connection.

• Rooted Android phone.

8

2.3 The Tarentula Tool

Tarentula is complex web crawling framework to collect malicious and legit apps
throughout the world.

We started the project with a DAVFI Android malware database built with
malware coming from the University of North Carolina [1] and from the Con-

tagio website [6]. Other sources have been added later on [7, 8]. Our database
contains around 1800 samples distributed over around 40 different malware fam-
ilies. Having malware is not enough, you also need clean applications (good-
ware). But how to determine whether an application is malicious or not? There
is no perfect answer here. The best approach consists in gathering open source
applications. This minimizes the risk of introducing a malicious content into
the database.

So we crawled the alternative library of open source Android applications
Ddroid as well as all Google Android code projects, with a web bot. In all
about 1,800 open source applications have been collected. Healthy and malicious
databases thus have the same size.

Malware detection heuristic methods are generally methods coming from
the data mining domain. So they need to be based on sound statistical to
generalize on actual data effectively. In other words, we needed more sample to
have an excellent statistical reference set. So we worked on collecting of Android
malware massively. This is an interesting topic because it is rarely discussed
in scientific articles on malware detection or just flown over. However this is
a central topic in the context of heuristic detection, especially if we intend to
build a heuristic antivirus which is competitive with other commercial antivirus.

The question that arises from this observation is “how AV companies collect
their antiviral malware?” Their main sources are most likely sample submis-
sion by customers/users/Virus Total and database sharing with other antiviral
companies.

One can see that the databases of the tool Andrubis were fed 70% through
the exchange of samples with the antiviral companies [2, Table II, page 15].
The second largest source is labeled“Source Unknown” and is actually made of
applications uploaded by individuals and companies. These are ways that we
did not have at our disposal, so we turned to another public sources: the web.

We designed a web crawler (web bot) called the Tarantula to download
applications on all types of media and sources. Unofficial media such as ftp,
alternative Android markets and torrents are preferred for two main reasons:

• The probability of finding malware is higher.

• Crawling Google Play, which is the official source, is a complex task be-
cause you must have a Google Account linked to a unique identifier for
the phone and it is not possible to download continuously with this ac-
count. Indeed Google blocks requests with a fairly low limit of successive
downloads (30). To avoid account blocking, it is necessary to manage a
large group of accounts in paralell. It is also necessary that all these ac-
counts are linked to phones configurations representing a wide range of

9

possibilities because it is not possible to download an application for a
non-compatible configuration.

Tarantula has allowed the collection of 280,000 applications to date. The iden-
tifcation of malware among these applications is a work in progress. We rea-
sonably expect to find between 10,000 and 20,000 malware (rough estimate).

The architecture of the Tarantula is described in Figure 4.

Figure 4: Panoptes Graph

3 The Paradigm of Insecurity: The Facebook

App

In order to illustrate how an application may undermine our privacy, the worst
example is likely to be the Facebook application. This application is one of the
most used app in the world and Facebook by nature contains a lot of users’
private information. In other words, Facebook is some sort of voluntary STASI
since Facebook spies us and people not only contribute but love that. However
they are totally unaware of how their privacy is undermined. In the Facebook

world there is no such things as (virtual) friends.
Facebook collects user’s submitted informations but what about information

collection without the users’ knowledge? What about informations stored in
plaintext on the phone (unencrypted)? We have experienced in our lab that
any plaintext data stored in the phone can be stolen in less than a minute
by means of a “digital serynge” that can inject, collect data into the phone
whatever may be the security settings.

10

After the Facebook application is launched we then connect it to our personal
account and after some basic navigation, we get all local data created during
the process:
✞ ☎

1 adb shell su -c ’cat /data/data/com.facebook.katana/**/*’> facebook-data.dump

✡✝ ✆

With this command you dump all local data on your computer. You get one
file containing all of them. After looking it in binary mode, we have ve seen
recuring patterns of interesting data. The next thing to do is to build some
regex to parse it.

Here is a simple regex to get the personal contact list.
✞ ☎

1 /"displayName":"([^"]*?)"ng.*?"friendshipStatus":"([^"]*?) ".*?"contactType":"([^"]*?)".*?"
cityName":"([^"]*?)"/

✡✝ ✆

Figure 5: Facebook Contact List

We can then know the name, the friendship status, where they live or at
least the last city they provide... We also can get the phone number if your
contacts provided it, a score about how often you discuss with this person (a
number between 0 and 1).

But it is not over and worse things are coming. You can get a huge amount
of personal data that are stored unencrypted in the phone:

• Private messages.

• Private photos.

• Private wall content.

• Many other private and non private data...

So an attacker does not need to know your account credentials, it only have to
get an access on your phone for less than a minute. And this can be a much
easier task with a digital serynge like ours.

11

Let us now expose what kind of information, the Facebook application is
leaking by performing the dynamic analysis. The Facebook app make a one-
kilometer POST request (due to lack of space, we will not give it here but
it is available on request; since it is commercial code we cannot publish all
the technical details unfortunately). Since it is under a cryptic form (only
apparently) here is the reverse procedure to apply to determine what is going
on:

1. Unescape url codes recursively.

2. Parse the output string as a JSON object.

3. Until the data super-structure is entirely reversed

(a) Try to parse each string in the JSON object as a JSON object.

(b) Try to decode each strings which seems to be in a base64 format,
then

i. Try to unzip the result with gzip if the magic number is “1F8B”,

ii. and finally read the result string with a WINDOWS minidump
reader like WinDBG (it is not a joke!).

Let us now summarize what information goes is leaking towards the Facebook

servers:

• Bootloader used.

• Device model/manufacturer/serial/hardware/ROM.

• CPU model/architecture/version + Kernel version.

• Screen settings.

• The complete list of system applications.

• All environnement variables.

• Open file descriptors count.

• Software and hardware file descriptors limits.

• Locations settings, developper settings, lockpattern settings:
✞ ☎

1 LOCK PATTERN ENABLED=1
2 LOCK PATTERN SIZE=3
3 LOCK PATTERN VISIBLE=1

✡✝ ✆

• Application settings.

• Security settings.

• Sound used for alarm alert.

12

• Spell checker settings and Screensaver settings.

• Notification settings (including used sound).

• Battery settings (including current energy level).

• Sounds/music settings, camera settings, Wifi connection settings.

• Sdcard and memory size/free space/used space.

• Usual user tracking info (timestamp for each user action):
✞ ☎

1 connection = WIFI
2 connection class = POOR
3 network extra info = Panoptes-AP

✡✝ ✆

In conclusion, Facebook knows everything on you but also on your phone/tablets.

4 The Analysis of Banking Apps

We are now presenting the analysis results for a lot of bank apps throughout
the world. Up to now, we have analyzed around 50 apps.

Bank Country Bank Country

BNP Paribas France LCL France
Crédit Agricole France Sofinco France
Société Générale France BforBank France

Finaref France Bradesco Brazil
BMCE Morocco Barclay UK
UBS Switzerland JP Morgan USA

Wells Fargo USA Bank of America USA
Burke and Herbert USA PNC Financial Service USA

Commerzbank Germany Deutsche Bank AG Germany
HSBC UK Santander Group Spain

Sberbank Russia Hapoalim Bank Israel
Shahr Bank Iran VTB Russia
LandKredit Norway Nordea Mobilbank Norway

Oversea-Chinese Banking Corporation Singapore DBS Bank Singapore
United Overseas Bank Singapore Bank of China Hong Kong

Bank Negara Indonesia Commonwealth Bank of Australia Australia
National Australia Bank Limited Australia Bank of Communications China
Mitsubishi UFJ Financial Group Japan Advanced Bank Of Asia Cambodia

Public Bank Berhad Cambodia Bangkok Bank Thailand
State Bank of Mongolia Mongolia HanaNBank Korea

Agricultural Bank of China China Industrial Bank of Korea Korea
Mizohobank Japan State Bank of India India

4.1 A Few Statistics

Before exposing a few case studies to illustrate the different cases of lack of
security in banking apps, let us give a summary on the different key points.

13

Figure 6: Bank Apps Permissions Granted

As far as permissions are concerned (how far and deep, apps can access the
different resources in the phone), Figure 6 summarizes our overall observations
(percentages are rounded down). From a general point of view, while permis-
sions can be considered as legitimate to enable the app to operate properly, a
few permissions must be seen as the direct violation of our privacy at least po-
tentially: ACCESS FINE LOCATION, CAMERA, CALL PHONE, READ CONTACTS....
Our interpretation is that in most cases, the developers do not want to compli-
cate things and gives root access to the app to facilitate the development. We
want thus consider that in most case this comes from a lack of seriousness that
an intended will to access our data. But banking applications have generally a
large power of action on the Android system.

Regarding behaviours, the situation is not better (see Figure 7).

14

Figure 7: Bank Apps Behaviours

Let us stress on a few key points.

• Almost all applications dynamically load the graphical content of their
pages from a remote server. The possibility offered by mobile develop-
ment (both Android, Apple) to execute html and javascript is pushing
companies to outsource the application content: what has been done for a
website can be copied almost unchanged for an application. Moreover, as
the content is loaded dynamically, there is no need to update the applica-
tion to change its graphics. The problem is that this makes the vulnera-
bility exploitation much easier in case of the content is loaded through the
HTTP protocol since an attacker can then inject code, including JavaScript
via man-in-the-middle attacks. The use of HTTPS is not always systematic,
especially in third-party development frameworks, particularly those used
for ads.

• Almost all applications have the ability to communicate in plaintext (un-
encrypted form) and the majority of them use the addJavascriptInterface

function. This feature entitles the javascript code to call java predefined
functions. Only on older versions of Android, there exist a vulnerability
induced by this feature, which allows JavaScript to call any Java func-
tion java through a reflection mechanism. This gives the opportunity for
man-in-the-middle attacks to get a remote shell on the phone whenever

15

the content is loaded via HTTP.

• We see that a large number of private information is retrieved such as
IMEI, MAC address, phone number...

Lastly, it is worth mentioning that the permissions used and the detected be-
haviors are not all displayed. It means that the user is far from being aware of
all what the app is actually doing.

4.2 Cases Studies

Let us now present a few cases studies.

4.2.1 JP Morgan Bank (USA)

The first application is JPMorgan Access app. This application is used for
managing JPMorgan accounts on mobile.

What is interesting is a json file which is sent by JPMorgan servers whenever
the app is started (Figure 8). This json file contains a field “signature”. It is
actually a long string of base64 characters. This string seems a bit too long if we
suppose that the goal is to authenticate the phone/user, for example. Therefore
it is possible that this is an encrypted message.

Figure 8: JP Morgan Access App - JSON File sent to the phone

We used an open source tool APImonitor which is able to exploit an appli-
cation. This tool decompiles the application then adds a monitoring function
on the target function parameters and finally recompile it. This enable to dis-
play the arguments of these target functions in the logcat file (the centralized
Android log system) dynamically.

The manipulated implementation reveals the reception of the signature chain
and subsequently the execution of a decryption function, supporting our hypoth-
esis. We also get the return value of the function that actually is the deciphered
string. Due of a limitation on the number of characters that can be written in
the logcat file, it is however not possible to recover all of this chain.

Here is what one obtains:
✞ ☎

1 ‘‘oxrohccRtI/m1w9NC/7nqwANljaa8fORRXcJ2S1EiThNdeuW6GEr
2 L7NQogAnOFtPdYlwP1Gh2+0aNqsnrKeGbw==
3 ##########
4 MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAMx6N9b4yaIFC60o
5 f8YWU1e08sh4KRoldfJRKmtVazOKg2p3UUwMT5oUwBYYEhWsSl
6 +bTD6DMCIQrwr2iSW09DkCAwEAAQ==
7 ##########
8 Root Call Blocker,LBE Privacy Guard,Dual Mount SD Widget,
9 Hexamob Recovery Pro,Total Commander,Boot Man’’

✡✝ ✆

16

So there are several strings separated by delimiters. These delimiters allow
us to find the place in the code where the strings are processed:
✞ ☎

1 ‘‘String[] arrayOfString = str2.split(’’##########’’
2 ...
3 RootTools.log(’’Executing sh Commands : ’’ +
4 arrayOfString5[0] + arrayOfString5[1]);
5

6 arrayOfString6[0] = arrayOfString5[0] ;
7 arrayOfString6[1] = arrayOfString5[1] ;
8 ...
9 List localList = runcmd(arrayOfString6);’’

✡✝ ✆

The chain is split and a portion is executed by the shell interpreter of the
phone. In other words, this is the remote execution of arbitrary shell commands.
In addition, the runcmd function executes the command as root if the phone
has the ability to do so (id est on rooted phones).

This behavior comes from the action of security framework that is in charge
to check a few given parameters that may indicate that the phone has been
infected. Part of this check is done through the remote execution of shell com-
mands whenever you start the application.

With the current behavior in place, JPMorgan operators have the capacity,
if they wanted to, to control their clients’ phone remotely. This should be seen
as a backdoor. All the technical details have sent to the bank in January 2014
(they contacted us in fact). We do not have news since. The vulnerability is
still active after two months. Nothing has been corrected yet

4.2.2 BNP Paribas (France)

The second case is that of BNP Paribas mobile app to manage personal accounts.
Dynamic analysis here has not fully worked because the HTTPS connection from
the Panoptes access point have been rejected. Some banking applications do
not trust the certification authority list contained in the smartphone and embed
their own list. This is in fact a strong key point from a security perspective.

Nevertheless we have indentified a vulnerability that is involved in an ad-
vertising framework used to promote additional services of the bank, and these
connections are unencrypted.

The framework uses an interesting javascript code. The A4STRK function
does not appear to be a normal javascript function. This seems to be the name
of a Javascript to Java interface. Parsing the app source code gives the answer
to us: this is actually the name of a javascriptInterface interface.

The problem is that this javascript code is transmitted unencrypted and
therefore can be modified to exploit vulnerability which affects either the javascript-
Interface or its container webView through a man-in-the-middle attack. There
exist several well-known vulnerabilities (CVE-2013-4710 and CVE-2012-6636)
which can be exploited in two cases and that would enable to get a remote shell
on the phone:

• The phone contains the Android API before version 4.2. This case still
relates to many users.

17

• The application targets an Android API before version 4.2, even if the An-
droid API is itself not vulnerable. Many applications, including the BNP
Paribas app, target obsolete versions (API v8) in order to be compatible
with a maximum number of different configurations.

Furthermore there is at least one vulnerability affecting webView. This vul-
nerability has not been disclosed by Google and consequently Google will not
publish any security patch to correct it for version 4.3 and prior versions. It is
therefore a major vulnerability which allows a third party to take control over
the phone.

We have sent all technical details to the security officer of the bank who
promised to correct everything (december 2014). Three months later, the bank
has corrected nothing. The vulnerability is still exploitable.

4.2.3 Bradesco (Brazil)

Regarding this Brazilian bank, here are the main results:

• The dynamic analysis shows that a private key is received unencrypted
from Bradesco servers. This is a private key used to identify the phone by
Bradesco servers and is used for additional services that Bradesco offers
(InfoMoney). This key can be stolen by a man-in-the-middle attack to
impersonate.

• Furthermore the application embeds an obsolete version of jquery JavaScript
lib that contains multiple vulnerabilities. We will let Bradesco assessing
the potential risks of these vulnerabilities.

4.2.4 SBerbank (Russia)

The Russian bank Sberbank app is an interesting case in that it shows for all
phones – regardless of the OS – and their relationship with the surrounding wifi
access points.

Interesting information are sent unencrypted to the Yandex servers (the
Russian equivalent of Google). The wifinetworks variable contains what appears
to be a list of MAC addresses and signal strength (in decibels). The first address
is actually the MAC address of the wireless access point, while the others are
those of surrounding access points.
✞ ☎

1 wifinetworks=001122334400:-45,0060B3E268C8:-66,4018B1CF2655:-77,4018B1CF2255:-77,4018
B1CF6455:-79,C8D3A352B1B0:-78,4018B1CF6

2 515:-83,586D8F747EC7:-85,4018B1CF2654:-76,4018B1CF2254:-83,4018B1CF6454:-84,4018B1CF6514
:-88,4018B1CF23D4:-90,4018B1CF23D5:-83,4018B1CF63D4:-92,D8C7C8138A92:-90

3 (001122334400 is the MAC address of our wifi access point used for interception)

✡✝ ✆

This information is sent by the Yandex maps API for geolocation purposes.
Why does the app need the wifi access points? GSM geolocation is not accurate
indoor. However with a list of wifi surrounding access points and signal reception
strength of these points from a device, it is possible to locate by triangulation.
This involves having a precise location of WiFi access points.

18

Looking at the answer from Yandex server, we have identified a XML docu-
ment with a tag “foundByWifi” and coordinates that are liely to be the location
of the nearest bank in Russia. The question that naturally follows is: how is
it possible that Yandex has the ESIEA Wifi acess points (the academy which
hosts our lab) in their MAC address database?

Yandex, like Google and any geolocation operators do, has a global wifi
hotspots database in order to make the precise location indoors. It is the only
explanation which comes in mind. How do they build such a database? Some of
these access points has been manually collected and are public. It is also possible
that open-source wardriving databases as well as data collected and stored by
Google cars have been used additionally. One can also think that there have
been agreements with telephone/Internet operators to access to a list of public
wifi routers. But it would provide a rather partial mapping of global access
points only. In reality, each of our phones is contributing unconsciously to this
huge database. Here is what the Google or Yandex maps services are doing
while running continuously:

• GSM position is sent at regular time intervals to their servers. When this
position cannot be obtained precisely, it means that it is an indoor location
then MAC addresses, SSID (Google) and the signal reception strength of
surrounding access points are mapped and sent to the last known GSM
location. The unknown access points are added to the database. Just three
different GSM precise positions are sufficient to triangulate and detrmine
the position of a new wireless access point precisely. This is the way
through which they are able to have a fairly complete mapping of world
global access points.

• Considering the amount of information collected by operators like Google
and Yandex, like many others, this is even no longer surprising. This
information could be misused. Being aware that open source projects like
snoopy-ng [10] or cheap drones can profile users through wireless access
points they connect to, we can easily imagine what could be done by
companies which have nearly unlimited information, resources and money.

4.2.5 Bank of China (China)

The application can check for available updates. A link on the official market is
sent whenever a new update is available. Then the app downloads and installs
the file. Moreover other navigation links (loaded by the app) are received. The
main issues are

• Security issue: this process is done entirely in HTTP.

• Potential risks with a MitM attack:

– Installation of an arbitrary app by social engineering

– Loading of arbitrary web pages.

19

– Exploiting the confidence of using a bank app, social engineering
could be devastating.

4.2.6 Miscellanous Banks

National Australia Bank Limited The client ID is written in the logcat (the
centralized Android log system). On vulnerable Android version, each ap-
plication can read logs of any other application. Moreover any attacker
that have a physical access to the device could obtain this information. It
could be used as a base information for social engineering attack. The
client contact list could be written in the logcat, as an unconditional
’Log.v("ContactListAdapter", "Phone contact: " [...])’ is cal-
led. However the dynamic analysis could not reach this code section, so
this behavior could not be formally verified.

Bangkok Bank • All sensitive code sections are dynamically decrypted
during application runtime. It make the reverse engineering very
tought.

• Panoptes SSL/TLS hacking did not succeed. The application have
fake root CA countermeasures.

• No plaintext communication has been observed during dynamical
analysis.

• No vulnerabilities have been hightligthed.

State Bank of Mongolia • The authentication is performed in 2 steps:
username check and password check. With this process, an attacker
can guess username with much less different possibilities.

• Username can be remembered and is stored unencrypted in the phone.

4.3 Banking Apps Security Comparison: Western World

versus Asian World

The overall security awareness of Asian banks seems superior to what we have
observed for European/American continents. In particular, the use of custom
obfuscation, security routines on the native layer (c libs.), custom trusted SSL
root CA... is prevalent and shows a significant care for security. Therefore the
analysis was much harder than what we have performed for Western Banks apps
But there is always some black sheeps in the flock (like the Bank of China, see
further).

Figure 9 summarizes the results on Asian banks analyzed.

20

Figure 9: Appraising of Asian Mobile Banking Security Assessment

5 Conclusion and Future Work

We intend to cover all banking apps throughout the world. WHile many oper-
ations can be automated, we however want to perform a final manual analysis
systematically in order to get rid of any risk of misinterpretation and false posi-
tive. Other kind of apps will be analyzed as well (games, email clients, security
tools...). Recent cases have shown that innocent-looking aps may be the vector
of dirty motivation and operations [4]. We want also develop our tools further
by using more advanced mathematics. The {Egide, Panoptes} reports should
also made public once security issues will be corrected by banks. We will take
a great care to verify that banks not only correct the existing vulnerabilities, if
any, but also whether the users’ privacy issues have been solved as well.

The technology of mobile (Banking) apps are far from being totally clean and
mature. Beyond a few cases of vulnerabilities, users’ privacy is not the priority
of developpers or outsourcers (here banks)! We have also observed significant
differences of awareness and security vision between Asia and Western world.

This study demonstrates that there is a strong need for pressure on app
developpers to take care of users’ privacy but also on banks. As consumers but
also as citizens we have to use this pressure to force the different IT actors to
respect our security and privacy. The bank apps market is not mature and has
developped too quickly. Functionalities take precedence over security and users’
fundamental rights for privacy and data confidentiality.

21

Another point which is worth mentioning is the difficulty to identify a visible
contact point to report security issues. This is the reason why now we have
decided to let banks to contact us. But this issue also holds for any other kind
of applications.

Finally, it is important to be aware that all the tested apps are on the Google
Play as well. This means that Google does not perform apps’ security analysis
at all. It does not care about users’ privacy either (but we all already know
that). Google, as a world IT power has the power to force developers to do a
better job.

References

[1] Android Malware Genome Project, http://www.malgenomeproject.org/

[2] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yan-
ick Fratantonio, Victor van der Veen, Christian Platzer (2014). ANDRU-
BIS - 1,000,000 Apps Later: A View on Current Android Malware Be-
haviors, Vienna University of Economics and Business White Paper,
https://iseclab.org/papers/andrubis_badgers14.pdf

[3] Ethem Alpaydin (2010). Introduction to Machine Learning, Second Edition,
MIT Press.

[4] James Ball (2014). Angry Birds and ’leaky’ phone apps tar-
geted by NSA and GCHQ for user data. The Guardian, Jan-
uary 28th, 2014, http://www.theguardian.com/world/2014/jan/27/

nsa-gchq-smartphone-app-angry-birds-personal-data

[5] DAVFI Project Website, http://www.davfi.fr/index_en.html

[6] Contagio, http://contagiodump.blogspot.fr/

[7] The Drebin Dataset, http://user.informatik.uni-goettingen.de/

~darp/drebin/

[8] Virus Share, http://virusshare.com/

[9] OpenDAVFI Project - Free and Open, New Generation Antvirus Engine for
Android, Linux and Windows, http://www.opendavfi.org. The website
will open soon.

[10] The Snoopy-ng Project, http://research.sensepost.com/tools/

footprinting/snoopy

[11] Graham J. Williams and Simeon J. Simoff (2006). Data Mining - Theory,

Methodology, Techniques and Applications, Springer Verlag.

22

