You can’t see me:
A Mac OS X Rootkit uses the tricks you haven't
known yet.

Ming-chieh Pan, Sung-ting Tsai. Team T5.

Contact: (nanika|tt)@teamt5.org

Abstract

Attacking Mac OS X has become a trend as we see more and more malware with advanced
attack techniques on Mac OS X. In order to gain persistent control and avoid detection,
malware have started to adopt rootkit tricks.

We will quickly review existing rootkit on Mac OS X, including both user and kernel mode, and
approaches to detect them. In the major part of the presentation, we will disclose several new
and advanced rootkit techniques by digging into more kernel objects and data structures. And
we will demonstrate how to evade existing detection and memory forensics tools, such as
Volatility.

Not only hiding things, tricks to gaining permission will also be discussed. It is not necessary to
be root to get into kernel. And also, we will introduce techniques to start rootkit, special way to
load kernel modules, and anti-tracing techniques.

The techniques we introduced have been tested on Mac OS X 10.9. There are new security
features to verify 3rd party kernel modules in OS X 10.9, and we will tell you how do we bypass.

Table of Contents

LY o 1y - [S PP P PP PPPOPPRO 1
1. AdVanced ProCess HiiNGuuuiiiiiiiiiieiiee ettt e e e e e e e e r e e e e e e e e e e e e e e e e sannnns 3
1.1 The rubilyn ROOLKIt......co e e e e e e e aaaeeeas 3
1.2 Detecting rubilyn Process HidiNgcccooieeiiiiiioiceeeeee et 4
1.3 Volatility and Bypass VoIatilityeeeeeeiereiiiiie e 4
S IF- T o Yol o Vo I 1Y/ F- =4 ol PPPPR 5
1.5 Unlink @ job in LAUNCRd ... e e e e e 5
2. A PriVIleged NOIMaAl USEI ...ttt e e e e e e e e e e e e et e e e e e e e eeaaaaaaeas 6
2.1 Running Privileged Tasks as @ NOrmal USerccooooiiiiciiiiiiiiiieeeeeeee e 6
D & (o1 A 4 V71 1T~ USSP UUT R 6
2.3 HOW t0 Get HOSE PriVIlEEE ... e 8
3. Direct Kernel Task Access (REAA/WIILE)coiiuuuiiiiieiiiieiee ettt e e e earae e e e e 9
3.1 Access Tasks Objects in Kernel from User Modecccccimiiiiiiiiiieieeeeeeeeee e 9
4. Bypass Kernel Module Verification in 10.9ueiiiiiiiiiieiiiiieeecccrerreee e 10
4.1 Loading @ KernNel MOUIEoeeeeiiii e e e e e e e e e e e e e s e aanes 10
L S Al g =1e (V=1 o § P PRSP 10
5. ATrick to Gain ROOT PErmMISSIONeiiiiiiiiiiiiie ittt s 11
B, CONCIUSION ..ttt et e e et e e ettt e e e bb e e e sabb e e e sbeeeeenneeeeanns 12

1. Advanced Process Hiding

1.1 The rubilyn Rootkit

The rubilyn rootkit was released on full disclosure in 2012, and claimed the following
capabilities:

* It works across multiple kernel versions (tested 11.0.0+)
* Give root privileges to pid.

e Hide files / folders

* Hide a process

* Hide a user from 'who'/'w'

* Hide a network port from netstat

* sysctl interface for userland control

* execute a binary with root privileges via magic ICMP ping

Although it is already 2 years old, it is still the most famous rootkit on Mac OS X.

Here is the process structure in kernel:

struct proc {

LIST_ENTRY(proc) p_list; /* List of all processes. */

pid_t p_pid; /* Process identifier. (static)*/

void * task; /* corresponding task (static)*/
struct proc * p_pptr; /* Pointer to parent process.(LL) */
pid_t p_ppid; /* process's parent pid number */
pid_t p_pgrpid; /* process group id of the process (LL)*/
lck_mtx_t p_mlock; /* mutex lock for proc */

char p_stat; /* S* process status. (PL)*/

char p_shutdownstate;

char p_kdebug; /* P_KDEBUG eq (CC)*/

char p_btrace; /* P_BTRACE eq (CC)*/

LIST_ENTRY(proc) p_pglist; /* List of processes in pgrp.(PGL) */
LIST_ENTRY(proc) p_sibling; /* List of sibling processes. (LL)*/
LIST_HBEAD(, proc) p_children; /* Pointer to list of children. (LL)*/
TAILQ_EEAD(, uthread) p_uthlist; /* List of uthreads (PL) */

Rubilyn uses a simple DKOM (direct kernel object modification) to hide processes. It just unlinks
p_list to hide process, so it is not difficult to detect rubilyn process hiding.

1.2 Detecting rubilyn Process Hiding

There is a corresponding task to each process, and tasks are also a linked-list like process list.

struct proc {

LIST_ENTRY(proc) p_list; /* List of all processes. */

pid_t p_pid; /* Process identifier. (static)*/

void * ﬁ; /* corresponding task (static)*/

struct proc * p_pptr; /* Pointer to parent process.(LL) */
pid_t p_ppid; /* process's parent pid number */

pid_t p_pgrpid; /* process group id of the process (LL)*/

struct task {
/* Synchronization/destruction information */

decl lck_mtx_data(,lock) /* Task's lock */

uint32_t ref count; /* Number of references to me */
boolean_t active; /* Task has not been terminated */
boolean_t halting; /* Task is being halted */

/* Miscellaneous */

vm_map_t map; /* Address space description */
queue_chain_t tasks; /* global list of tasks */

void *user_data; /* Arbitrary data settable via IPC */

/* Threads in this task */
queue_head_t threads;

So we can easily detect rubilyn process hiding by listing tasks and comparing with process list.
Actually rubilyn can only hide process from ‘ps’ command, however using Active Monitor can
see process/task that hided by rubilyn.

1.3 Volatility and Bypass Volatility

Volatility is a well-know memory forensic tool. New version of Volatility can detect rubilyn
rootkit.

After some study on Volatility, we found that it checks p_list, p_hash, p_pglist, and task. So we
can unlink p_list, p_hash, p_pglist, and task list, then Volatility cannot detect us.

Demonstration video: https://www.youtube.com/watch?v=_QD5YVSZz4U

In previous chapters, we did lots of hard works in kernel in order to hide process. However,
there is a trick that we can easily find an invisible process from user mode!

Launchd is monitoring all process creation and termination. It maintains a job list in user mode.
‘launchctl’ is the tool to communicate with launchd. It can easily list jobs like this:

Naniteki-MacBook-Air:ext_research Nani$ launchctl list
FPID Status Label

11665 Ox 7/ tc8e9c3bla@.anonymous.launchctl
11648 Ox /Tc8e9dB7all. anonymous . vmware—wmx
11511 [@xB-Px5ab5ab] .com. SweetScape . B1VEdL tor
11483 ﬂn.+“960e@eqbﬂ anonymous.Google Chrome
11401 X7 fc8eQc390f0.anonymous.Google Chrome
113085 ’Fr8 9el@c/c@.anonymous.Google Chrome
11263 ’FFSeJdG??QQ.Gnonymous.Google Chrome
11253 X Tc8eQdPod90.anonymous.Google Chrome
11178 Ix 7 fc8eQelcdc®.anonymous.Google Chrome
10785 Ix 7 tc8e9eBcacB.anonymous.Google Chrome
10411 Ox 7 fc8e9c3bdal.anonymous.Google Chrome
10341 Ox 7 fc8e9c3aeal.anonymous.Google Chrome
10312 Ox 7 fc8e2d07100.anonymous.Google Chrome
10237 Ox 7 fc8e9c3abal.anonymous . vmne t-dhcpd
10247 Px 7 tc8e9c3a039¥.anonymous . vmware-usbarbi t
10242 Ix ¢/ tc8eQc3a8ald.anonymous.vmnet-netifup
10240 Ox 7 tc8e9c39d90. anonymous . vmne t-natd

T T ITTITITTTITTITTTITTITXI

Here are the steps to unlink a job in launchd:

N Get root permission.
. Enumerate process launchd and get launchd task.

. Read launchd memory and find data section

* Find root_jobmgr
B Check root_jobmgr->submgrs and submgrs->parentmgr
* Enumerate jobmgr and get job
* Enumerate job and find the target job
* Unlink the job

2. A Privileged Normal User

2.1 Running Privileged Tasks as a Normal User

Following picture shows that we can do privileged tasks as normal user:

Last login: Tue Mar 11 ©9:49:53 on ttys00@
vms-Mac:~ vm$ cd Desktop/

vms-Mac:Desktop vm$ whoami

vm

vms-Mac:Desktop vm$ kextstat |grep "nanika.true"
vms-Mac:Desktop vm$./kext_load

getpid:429 uid:501 euid:501

1

ret:0x0
log:<array ID="@"></array>
getpid:429 uid:501 euid:501
vms-Mac:Desktop vm$ kextstat |grep "nanika.true"
92 0 oxffffff7f81a5d000 0x3000 0x3000 nanika.truehide (1) <7 5 4 3 2 1>
vms-Mac:Desktop vm$

As a normal user vm (uid:501), we successfully loaded a kernel module ‘nanika.true’. How did
we do this?

2.2 Host Privilege

In Mac OS X, when a process performing a task that requires permission, it doesn’t check uid of
the process, instead, it checks if the task is granted the Host Privilege.

struct host {
decl_lck_mtx_data(,lock) /* lock to protect exceptions */
ipc_port_t special [HOST_MAX SPECIAL_PORT + 1];
struct exception_action exc_actions[EXC_TYPES_ COUNT];

}i

typedef struct host host_data_t;
extern host_data_t realhost;
/*

* Always provided by kernel (cannot be set from user-space).

*/
#define HOST_PORT 1
#define HOST_PRIV_PORT 2
#define HOST_IO_MASTER_PORT 3
2

#define HOST_MAX SPECIAL KERNEL_ PORT /* room to grow */

Here is a list of the things we can do with host privilege:

Host Interface

host get clock service - Return a send right to a kernel clock’s service port.
host get time - Returns the current time as seen by that host.

host_info - Return information about a host.

host kernel version - Return kernel version information for a host.
host_statistics - Return statistics for a host. |

mach_host_self - Returns send rights to the task’s host self port.

Data Structures

host basic_info - Used to present basic information about a host.

host load info - Used to present a host’s processor load information.

host sched info - - Used to present the set of scheduler limits associated with the host.
kernel resource sizes - Used to present the sizes of kernel's major structures.

Host Control Interface

host_adjust_time - Arranges for the time on a specified host to be gradually changed by an adjustment value.
- Set the default memory manager.

host get boot info - Return operator boot information. ,

host _get clock control - Return a send right to a kernel clock's control port.

host processor_slots - Return a list of numbers that map processor slots to active processors.

host processors - Return a list of send rights representing all processor ports.

HiGstiteboot - Reboot this host.

host set time - Establishes the time on the specified host.

Host Security Interface
host_security create task token - Create a new task with an explicit security token.
host_security set task token - Change the target task's security token.

And actually it can have permission to control a tasks via these API:

* processor_set_default
* host_processor_set_priv

* processor_set_tasks

Host privilege gives a process power to do a lot of things. That’s the reason why we can load a

kernel module as a normal user.

2.3

How to Get Host Privilege

There are 3 ways to grant host privilege to a regular process:

* Assign host privilege to a task

Parse mach_kernel and find _realhost

Find task structure

Assign permission: task->itk_host = realhost->special[2]
Then the task/process can do privilege things.

* Hook system call (Global)

When process is retrieving the task information, make it return with host privilege.
Patch code (Global, good for rootkit)
Here is the code we are going to patch: (host_self trap)

mach_port_name_t
host_self_trap(
__unused struct host_self_trap_args *args)

{
ipc_port_t sright;
mach_port_name_t name;
sright = ipc_port_copy_send(current_task()->itk_host);
name = ipc_port_copyout_send(sright, current_space());
return name;

}

Patch code:

) busiu DUl aipu eyo. 1o e reu ey
| _host_self_trap:
Oxffffff8000225f20 55 push rbp
Oxffffff8000225f21 4889E5 mov rbp, rsp
OxFfffff8000225f24 65488B042508000000 mov rax, gword [gs:@x8]
Oxffffff8000225f2d 488B8058030000 mov rax, gqword [ds:rax+@x358
Oxffffff8000225f34 488BB820020000 mov rdi, gword [ds:rax+0x220Q
Oxffffff8000225f3b E89Q34FFFF call _ipc_port_copy_send
Oxffffff8000225f40 65488B0C2508000000 mov rcx, gword [gs:@x8]
Oxffffff8000225f49 488B8958030000 mov rcx, gword [ds:rcx+0x358
OxfFff 800022550 488BB168020000 mov rsi, gword [ds:rcx+0x268
Oxffffff8000225f57 4889C7 mov rdi, rax
Oxffffff8000225f5a 5D pop rbp
Oxffffff8000225f5b E9E034FFF5 jmp _ipc_port_copyout_send

call _host_self
mov rax, [rax+0x20]
mov rdi, rax

3. Direct Kernel Task Access (Read/Write)

Since Mac OS X 10.6, it restricted task access for kernel task. According to this report:

"task_for_pid() is not supported on the kernel task, no matter your
privilege level nor what API you use.

... there is no legitimate use for inspecting kernel memory.”

However, we discovered a way to direct access kernel task memory. We don’t use
task_for_pid(), instead we use processor_set_tasks().

* processor_set_tasks(p_default_set_control, &task_list, &task_count);
* then, task_list[0] is the kernel task!

We can control all of tasks and read / write memory, even use thread_set_state() to inject
dynamic libraries.

4. Bypass Kernel Module Verification in 10.9

4.1 Loading a Kernel Module

In Mac OS 10.9, if you want to load a kernel module you have to:

* Put the kernel module file into /System/Library/Extensions/
. Run kextload to load the file

* |f the kernel module is not signed, OS will pop up a warning message.

Kernel extension is not from an identified

developer

The kernel at*/s /Library/E /
T patch_kext_request.kext” is not from an identified
developer but will still be loaded.

Please contact the kernel extension vendor for

updated software.
Lo |

You can see there are many limitations.
Surprisingly, we found a way to break these limitations. We can:

* Load a kernel module from any path.

* Load a kernel module on the fly, from a memory buffer, etc. File is not required.
* Load a kernel module without verification. (no warning message)

* No need to patch kextd.

4.2 Kkext_request()
Using kext_reqest() to load kernel module, we can bypass many verifications. Following are

steps to use kext_request():

* Get kext data ready. You need to know mkext

10

typedef struct mkext2 file entry ({
uint32_t compressed_size; // if zero, file is not compressed
uint32_t full_ size; // full size of data w/o this struct
uint8_t data[0]; // data is inline to this struct

} mkext2 file entry;

typedef struct mkext2 header {
MKEXT_HEADER_CORE
uint32_t plist_offset;
uint32 t plist compressed_size;
uint32_ t plist_full size;

} mkext2 header;

Get your host privilege. It checks the privilege.

if (isMkext) {
#ifdef SECURE_KERNEL
// xxx - something tells me if we have a secure kernel we don't even
// xxx - want to log a message here. :-)
*op_result = KERN_NOT_SUPPORTED;
goto finish;
#else
// xxx - can we find out if calling task is kextd?
// xxx - can we find the name of the calling task?
if (hostPriv == HOST_PRIV_NULL) {
OSKextLog(/* kext */ NULL,
kOSKextLogErrorLevel |
kOSKextLogLoadFlag | kOSKextLogIPCFlag,
"Attempt by non-root process to load a kext.");
*op_result = kOSKextReturnNotPrivileged;
goto finish;

}

*op_result = OSKext::loadFromMkext((OSKextLogSpec)clientLogSpec,
request, requestLengthlIn,
&logData, &logDataLength);

Call kext_request() to load the kernel module.
Then you won'’t get any problems.

5. A Trick to Gain Root Permission

We mentioned many techniques that could be used in a rootkit. However, all of these tricks

require the permission. We noticed a design problem that could be leveraged by malware to
gain root permission.

11

Authorization rights are a core part of Mac OS X's security. Rights determine who can and
cannot access specific functionality. This is controlled by securityd. It provides a mechanism for
applications to gain root permission.

When an application requires root permission, it could send request to get specific right. For
example:

* system.privilege.admin

* system.privilege.taskport

* com.apple.ServiceManagement.daemons.modify
* com.apple.ServiceManagement.blesshelper

Then user will see a pop up window and ask for password to confirm.
However, one of right is interesting: com.apple.SoftwareUpdate.scan

No matter who request this right, user will see a window like this:

security_auth is trying to check for new
Apple-provided software. Type your password

M\
ll | j to allow this.

Name: vm

Password:

- Cancel | | Check |

“security_auth is trying to check for new APPLE-PROVIDED software”. We think most of users
will type the password and won’t feel anything wrong. After typed the password, we can gain
root permission.

6. Conclusion

In this paper, we introduced several tricks that could be used by rootkit.

* Advanced Process Hiding: it could hide processes and bypass detection by all existing
security software.

12

A Privileged Normal User: rootkit can use this trick to create a ‘normal’ power user. It
won’t be noticed easily.

Direct Kernel Task Access: easier to access process memory.

Loading Kernel Module Without Warnings: more flexible way to load rootkit modules.

A Trick to Gain Root Permission: the trick might be used by malware to gain the 1*
permission.

13

